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BAYESIAN ANALYSIS OF INSPECTION SANPLING PROCEDURES
DISCUSSED BY DEMING!
by

Richard E. Barlow and Xiang Zhang

\\\\\~“‘—1;\ ABSTRACT
> In Chapter 13 of Qualitv. Productivitv. and

Competitive P . Deming discusses in detafl

inspection sampling relative to two different cost
setups. Because of their practical importance, one of
these models was examined in detail from a Bayesian
point of view by Barlow and Zhang/;;;;;}% A very
general Bayesian treatment of these problems is provided
by Lorenzen/;;;;;;¥ A computer program i{s also provided
by Lorenzen for the Bernoulli case as well as inspection
sampling plans which reject the lot when the number of
defective items is sufficiently large. However, as we
shall see, simple rules of this form are not optimal for
all of Deming’'s models. In particular, Deming’'s

discussion of inspection rules when the finished

assembly cannot be repaired by replacing defective units:’
) .

A
is of this type. Deming describes this model as “value W if-
a

added to substrate”. For example, if the unit is a bagr-)d?cL 0

o
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;> of cement powder, then it cannot be recovered from the
assembly after water has been added.

The purpose of this paper is to analyze and
contrast the two models considered by Deming from a
Bayesian decision analysis point of view. We will
analyze the models using influence diagrams,[Howard and
Matheson (1981). Shachter (1984)]. 3 This is a relatively
new technique for studying statistical problems. It
will be useful for studying inspection sampling
problems.

2. USING INFLUENCE DIAGRANS

We will explain the use of influence diagrams in
terms of a verf simple model. Suppose we are
considering whether or not to inspect units in a unique
lot of size N of such units. That is, there are no

o other units than those in this lot. The question is

whether or not to inspect units before installing them

o in an assembly. Inspection costs k, dollars per unit.

i If a unit is not inspected but is found later to be
defective in the assembly, the cost is k; dollars.

o The decision variables are n ., the inspection sample

¢ size, and the inspection decision after all n units
have been inspected. Inspection decision d° is not to
continue inspection. Inspection decision d, 1is to

N inspect the remaining N-n. Figure 2.1 describes the

problem setup.
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k1 <kz

DEMING'S INSPECTION PROBLEM

FIGURE 2.1




Figure 2.2 is an influence diagram related to our
problem. In the diagram, circles denote unknown
quantities while rectangles denote decision nodes. A
double circle denotes a deterministic or logical node.
In the figure, the node corresponding to x; . the
number of defectives in the remainder N-n, is
deterministic since

X, = 0 - x; given 6 and x,

Arrows indicate logical and statistical dependence.
Associated with each circle is a conditional probability
distribution. If units in the lot are judged
exchangeable a priori, then the distributfon of x,
given 6, n, and N {s hypergeometric. An initial or
prior distribution must be assigned to 6 , the unknown
number of defectives in the lot. Given n and x; the
total cost is k,n + kax; if the decision is do . If

the decision is d, . the total cost is k,N . D

_
Harlow and Zhang (1985)%w 2 related amodel.

A mathematically convenient distribution model for
the initial distribution of O 1is the Beta-Binomial. 0
is Beta-Binomial if 0 given p 1is Binomial(p.N) and
p 1is Beta(A,B) where _
Beta(A.B) = pA1(1-p)B!
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INSPECTION

DECISION
{dg.dq}

INSPECTION OF A UNIQUE LOT
FIGURE 2.2

Sample Size

n<N




and A,B > 0. In this case [cf. Basu and Pereira
(1982)]
e E[6-x,ix,.n,N] = (N-n)(A+x,)/[A+B+n]

and the decision rule d; is optimal if

N (A+x,)/[A+B+n] > k,/k,

o

:ﬂ Since the left hand side is increasing in x, and

A decreasing in n ¢ N , we have that n=N is optimal if
X and only if

N A/[A+B+N-1] > k,/ka

' Unfortunately the Beta-Binomial is not an

R appropriate prior distribution if we strongly believe a
LI

L

fﬁ priori that 6 1is approximately 90 (0 < 90 < N) so
© ¥

e that the coefficient of varfation

v 172

*§ o(6)/u(e) < [(1-e°/N)/e°]

%{ For the Beta-Binomial

M

- o(9) =J[NA/(A+B)][1—A/(A+B)][(A+B+N)/(A+B+1)]

&l\,“!

;ﬁ and u(6) = NA/(A+B) = Oo so that the coefficient of
B

P variation satisfies

Ted

M

ol 1-6_/N) (A+B+N)

o(8)/u(e) = B, (ATB+I)

;§ > (I-GOIN)/Oo .

LN

w

In this case do may be best if x; is sufficiently

large so that the decision rule is reversed from the

4
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Beta-Binomial case.

In the appendix the solution strategy for the
problem with arbitrary prior is described in terms of
arc reversals and node eliminations. To determine the
sample size, n ,

o Minimize 3 Min{k,n + kE(x2!x,.n,N), ksN} p(x,:n,N)
r n x
1

Knowing the decision rule (as in the Beta-Binomial case)

%z simplifies the computation by allowing the first minimum
fg' computation before the summation.

)

§§ 3. DEMING’S INSPECTION SAMPLING MODELS

ﬁg Units from a lot of size N are installed in an

N assembly at a point in the production line. The

%g question is whether or not to inspect the unit (at cost
%% $k,/unit) before installing the unit in an assembly. If
J? the unit is not inspected but is defective, then this
é% will be discovered at assembly test. A cost Sk, > $k,
i% will then be incurred. In model 1, the defective unit
N found at assembly test will be replaced by a good unit.
éi In model 2, this is not possible and the assembly will
5%& be sold at a reduced price. In this case k; 1is the

A loss incurred. In Deming's models all lots are judged
;& exchangeable a priori so that a binomial(p.n)

?2 probability function is used for the number of defective
cﬁﬁ units in the lot. The unknown percent defective is

ﬁf denoted by p.
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In both models we consider inspecting n ¢ N units.
Let x, be the number defective in the sample of size
n. Since known defective units will not be installed,
an additional y, units are inspected until good units
are found and installed. Since the vendor will replace
defective units at the vendor's cost we may consider the
y: units that are inspected to come from a separate and
very large lot provided by the vendor. The sampling
inspection cost is k,[n+y,] .

Af ter inspecting n units we consider only two
possible decisions for both models, namely

dor STOP inspecting units
d,: INSPECT the remaining N-n

In model 1, the x; defective units found in the
remaining N-n units at assembly test are replaced by
good units. To do this an additional y, wunits need to
be inspected to find good units. The y, wunits
inspected also come from the separate lot provided by
the vendor. The cost of defective units found at
assembly test is

kaoXxa + kya

The logical and statistical dependency between the
unknown quantities and decisions are shown in Figure
3.1. The random quantity, p , is the unknown percent

defective in many lots, all judged exchangeable.
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Figure 3.1 makes explicit the well known fact that
.F“ x, and x; given n and p are statistically

independent. Table 3.1 describes the variables used in

; Figure 3.1.
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b TABLE 3.1
‘: MODEL 1
¢
‘
3 UNKNOWN QUANTITIES DESCRIPTION CONDITIONAL
" PROB.
) DISTRIBUTIONS
P Percent defective wv(p)
in many lots
\
. X, # defective in P(xsin,p)
N sample size n
- Y # additional p(y,lxl.p)
.5:
(y1 2 x4) inspections rqd.
4
: X2 # defectives in p(x2iN-n,p)
by N-n
. Y2 # additional P(yz2ixs.p)
n (vy2 2 x2) inspections rqd.
4
£
X
4 DECISION DESCRIPTION
. VARIBLES
i
Y
' n Sample Size
; do(x,.n) Decision to STOP inspection given
1
\ (x4.n)
; dy(x,.n) Decision to INSPECT remaining N-n

given (x,;.n)

.y l e , .
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Model 1 was examined in detail in Barlow and Zhang
(1985). Let Z; be an indicator for the i-th unit
which is 1 if the unit is defective and O otherwise.
Given n and x; , d, 1is optimal 1if
E[E(Z,ip)ix;.n] 2 ky/k, . The assumption made was that
only x, and n were known at the time of the
inspection decision. Since y; . the additional
inspections required is also presumably known. there is
a loss of information. If both n and y, are known
at the time of the inspection decision then the critical
number, c¢(n) . may exceed n 1in this case. Other
than this, all the results in Barlow and Zhang (1985)
carry over to the case that y,; 1is known at the time of

the inspection decision.

4. DEMING'S MODEL FOR VALUE ADDED TO SUBSTRATE
Work is done on incoming material, the substrate.
The finished product will be classed as first grade or
second grade or third grade or scrap. Let k, be the
average loss from downgrading the final product or for
scraping finished items.
If the incoming unit is non-defective, then it will
o result in a final product of first grade; otherwise, if
it is defective, and if it goes into the production
line, then a final product of downgrade or scrap will be

produced. Every final product is subject to assembly

4 Sty W, A A e o o e e L A TS R AT N IO
‘"E‘ﬂ!‘\.!‘s. n'A‘!‘l‘-‘l..«.\"'l.". ‘::‘ l“".l! Yt ‘-'."i'! (LA A [y .!'1 W0t O ; QL LITAX X A u:.-'A"»‘l:! ¢, 58, "‘a"‘o'ﬁ’ﬁ“i" LS e
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grading. Figure 4.1 is an influence diagram
representation of our problem. In this case there is an
arrow from inspection decision to y, since y, =0 if
decision do is taken.

The optimal inspection decision rule can be
calculated for every sample size n in terms of the costs
ky, kz and the prior distribution for p.

mma 1. Suppose n units are inspected and x, are
found defective. The optimal inspection decision rule
in this case is d, 1if
E[Var(Z,ip) ! x,.n-1] 2 k, /k,
where expectation is with respect to the posterior
distribution of p given x;, and n-1

Since p(l-p) < 1/4 for all O < p <1 . it
follows from Lemma 1 that if k./k, > 174 , then do is
optimal for all possible O {( x; { n {( N ;:; f.e. n =0
is optiwmal in this case.

For a Beta(A,.B) prior and given x, and n ., d,
is optimal 1if

(A+x,)(B+n-1-x,)/[(A+B+n) (A+B+n-1)] 2 k,/k.

Hence, given x, and n, d, 1is optimal if
x; € [ey(n) . ca(n)]

where c¢;(n) and c3(n) are given by

cs(n) = [-b -AJIQE- Qac)‘

2a
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cz(n) = |-b + J(Ei - 4ac)

. 2a

where a

1, b = -(B+n-1-4),
¢ = -A(B+n-1) + (A+B+n)(A+B+n-1)k,/k,

The intuitive reason for this rule is as follows.

o If the expected variance is small, then we expect that
p 1is either close to zero or close to one. If we

}ﬁ believe p 1is close to O so that there will be few
gt defectives, then there is no point to inspection. On
the other hand, if we believe p 1is close to one, then

there will be so many defective units that the cost of

I

:@g inspecting units to find a good unit to replace a

ge defective unit before assembly will tend to exceed the
%% cost due to downgrading the final assembly even if it is
@g defective.
s This decision rule is in contrast to the decision
. rule for Model 1 where we inspect all units if the

fﬁ posterior expected probability that a unit is defective
| is sufficiently large.

Aj Proof of Lemma 1. Suppose we inspect n units and x,
’gg are found defective. The expected cost given n and
«g x; 4f we take decision d° is
‘ c(d;) = (N-n) i’ kapr(pix,.n) dp .

‘o

?& If decision d, 1is taken, then the expected cost is

1
. ¢(ds) = (N-n) J k,(1-p) x(pix,.n) dp .

REREE A A L L AR AN WO L A LA O LR O S{IN i RN LA AU O MO I N ML A
A AN ‘\\4 ‘, u‘.-f“:” YRR 5 ¢ e e i‘ss "‘-“n‘:*o‘ T A 1) b 5#" &;ﬂki §
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Consider the difference

P C(dy) - C(d) = (N-n)ka I [p - ki/ka(1-p)™ Jx(pixi.n) dp

'i‘:,":. 1
e = (N-n)k. £ (1-p) '[p(1-p) - Kk /k2]w(pix,.n) dp .

Since w(pixy.n) is proportional to p~'(1-p)" *'x(p)

N
R 1

o C(d,) < C(dy) iff g[p(l-p) - ky/kz21p%  (1-p)* 1 X tx(p) dp < O

f\.»‘i! 1
“ea 1ff | p(1-p)w(pix,.n-1) dp < k,/k,
0

: R 693; 1
iff J Var(Z,!p)w(pix,.n-1) dp < k,/k,
(0]

‘!,:ﬁ iff E[Var(ztip)lx‘ .n'l] < kg/kz . QED

‘m@ emm . E[Var(Z,!p)ix;.n-1] 1is unimodal in x,; (n)

when n (x;) s fixed.

13 l& 1

R, Proof. E[Var(Z,!p)ix;.n-1] = § p(1-p)*v(pix,.n-1) dp .
(]

— Note that w(pix,.n-1) can be written as
Ao g(x,.n)(l-p)px‘(l-p)n-x‘ . It is well known that
Tty px‘(l-p)n-x’ is a totally positive function of x, and

ey p and reverse regular function of n and p [Karlin

Theorem 2.1, page 18 (1968)]. It follows that

(AR AN
SO

KEURUEOMNT
L “Q‘;““;""'q"“::)‘
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#(pix;.n-1) {is totally positive in x, and p and
reverse regular in n and p since g(xs,n) > 0 .
Using the sign variation diminishing properties of
sign-regular functions [Section 3, Chapter 5, Karlin

(1968)] we can finish the proof. To do this consider

1
h(x;.n) - a = g [p(1-p) - a)¥(pix,.n-1) dp

1 2
= g [-p“+p-al¥(pix,.n-1) dp

for a fixed real a . The quadratic function can have
at most two sign changes in [0.1] . The sign must
change from negative to positive to negative {f there
are exactly two sign changes. It follows that
h(x,.n) - a as a function of x, (n) when n (x,) 1is
fixed, changes sign at most two times when x; (n) runs
from O (x;) to n (N) . Furthermore h(x,.n) as a
function of x; changes sign in the same order if there
are two sign changes. As a function of n it changes
sign in the opposite order if there are two sign
changes. Since a {s an arbitrary real number, this
implies the unimodality properties as stated. QED
The figures below illustrate h(x,.n) as a

function of x, for fixed n and also as a function of

n for fixed x,
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Theorem. For Model 2 and given n and x,; the optimal
inspection decisfon is d; 1if and only {f
x; € [cy(n)., c2(n)] .

where c;(n) and c2(n) are solutions to

1
g p(1-p)r(pic,n-1) dp = O .

This is true for any prior distribution for p.
The proof is an immediate consequence of Lemmas 1

and 2.

5. CONCLUSIONS

Influence diagrams are a useful technique for
displayihg the logical and statistical dependence
between unknown quantities and decision variables in
inspection sampling problems. They can also be used to
develop a computational solution strategy. The solution
strategy is simplified if the form of the optimal
inspection decision rule can be calculated. However,
the "obvious” inspection rule of inspecting all
remainders in a lot when the number of defectives in a
sample is sufficiently large is not always correct.
This has been shown for two cases; namely the case of a
unique lot when we have a strong prior for 6 (i.e. the
prior coefficient of variation is sufficiently small)
and for the Deming Model 2 corresponding to "value added

to substrate.”
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FIGURE A1
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THE NODE CORRESPONDING TO 6 HAS BEEN ELIMINATED

FIGURE A.2
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COST = MIN(kqn + ko E(xjlxq.n), kqN}

FIGURE A3

AND OPTIMUM DECISION RULE CHOSEN

o |
COST HAS BEEN EXPECTED WITH RESPECT TO X,

n<N

p(xqin.N)
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COST expected out with respect to distribution of x4
FIGURE A4

The final step is to Minimize Expected Total Cost with respect to n < N.
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